Определение ветровых нагрузок на подвесной потолок консольного вылета главного фасада торгового центра

Проведено математическое моделирование ветровой обстановки в районе Торгового Центра (г. Волгоград, ул. Рабоче-крестьянская)

Расчеты проведены путем численного решения трехмерных нестационарных уравнений газовой динамики с учетом турбулентности потока.

Общий вид геометрии модели представлен на рисунке 1.

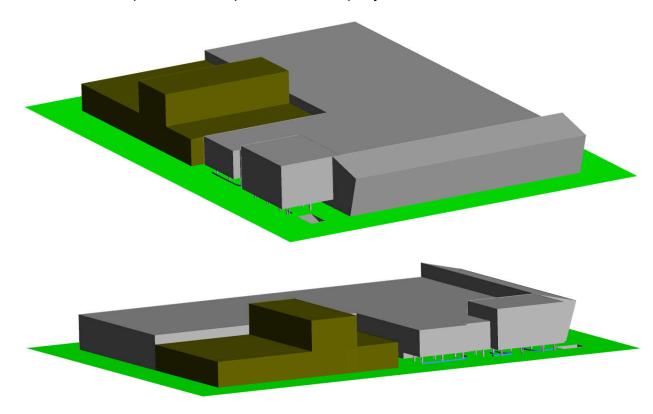


Рис. 1. Геометрия модели.

Исходными данными для построения профиля ветра были величины ветрового давления для ветрового района «III» и типа местности «В» (согласно СНиП 2.01.07-85). Пересчёт величины давления производился по формуле $v = \sqrt{\frac{w_m + w_p}{0.61}}$, величина «0.61» соответствует значению 0.5ρ для атмосферного давления 101325 Па и температуры 15° С. Коэффициент пульсаций ζ =0.7.

Для использования в расчетах данный профиль не годится из-за наличия изломов и несогласованности с шероховатостью земной поверхности.

Поэтому, был построен логарифмический профиль соответствующий данному профилю в приземном слое атмосферы.

Выражение для профиля скорости имеет вид: $U=\frac{u_*}{\kappa}\ln\frac{x}{x_0}$, где $x_0=0.1\,\mathrm{M}$ — параметр шероховатости подстилающей поверхности, $u_*=U_{ref}\kappa/\ln(x_{ref}/x_0)$. Характерная скорость ветра U_{ref} =26.2 м/с (при x_{ref} =10м).

Для вычисления турбулентных напряжений Рейнольдса применен вариант *RNG* $k-\varepsilon$ модели турбулентности.

Геометрия земной поверхности вокруг модели считалась плоской.

Поверхность здания предполагалась гладкой, поверхность окружающей местности предполагалась шероховатой с параметром шероховатости $x_0 = 0.1$ м.

Полное количество элементов расчетной сетки 3.4 миллиона.

Характерные элементы сетки показаны на рисунке 2.

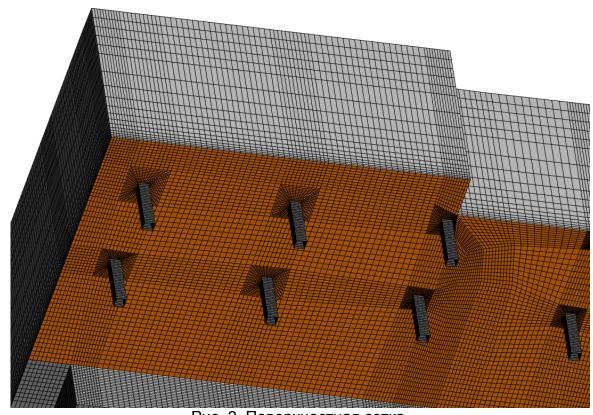


Рис. 2. Поверхностная сетка.

Задача решалась в нестационарной постановке.

Основным результатом работы являются поля давления по поверхности модели, поэтому при расчете проводилось статистическое усреднение поля давления по времени $T \sim 15\text{--}30\,$ с, за это время массы воздуха преодолевают расстояние, втрое превышающее характерный размер объекта и таким образом гарантируется усреднение результата по времени превышающему характерное время жизни максимально крупных вихрей вокруг модели.

Результаты.

Результатом расчетов являются картины поля давления по поверхности сооружения, полученные для различных вариантов направления ветра.

Наряду с картинами осредненного давления, получены картины пиковых (максимальных и минимальных) значений давления для каждого расчетного случая.

На рисунке 3 приведен пример поверхностного распределения максимального (за моделируемое время) давления на поверхности подвесного потолка.

На рисунке 4 приведен пример поверхностного распределения минимального (за моделируемое время) давления для одного из расчетных случаев.

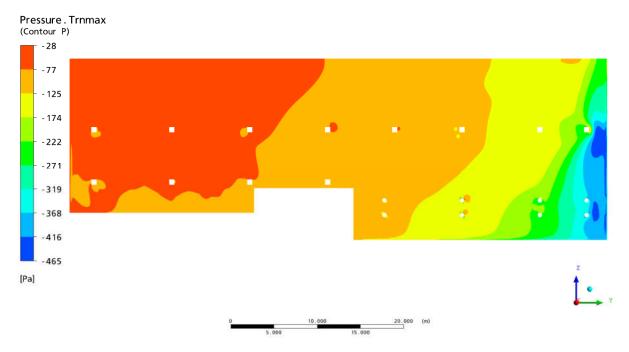


Рис. 3. Распределение максимального давления.

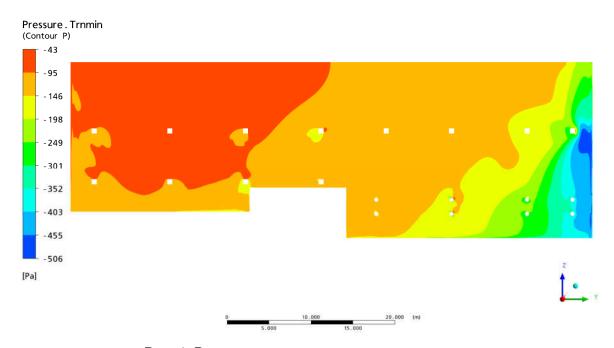


Рис. 4. Распределение минимального давления.